Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 23(4): 904-913, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-27956743

RESUMO

Genetic susceptibility and environmental factors (such as stress) can interact to affect the likelihood of developing a mood disorder. Stress-induced changes in the hippocampus have been implicated in mood disorders, and mutations in several genes have now been associated with increased risk, such as brain-derived neurotrophic factor (BDNF). The hippocampus has important anatomical subdivisions, and pyramidal neurons of the vulnerable CA3 region show significant remodeling after chronic stress, but the mechanisms underlying their unique plasticity remain unknown. This study characterizes stress-induced changes in the in vivo translating mRNA of this cell population using a CA3-specific enhanced green fluorescent protein (EGFP) reporter fused to the L10a large ribosomal subunit (EGFPL10a). RNA-sequencing after isolation of polysome-bound mRNAs allows for cell-type-specific, genome-wide characterization of translational changes after stress. The data demonstrate that acute and chronic stress produce unique translational profiles and that the stress history of the animal can alter future reactivity of CA3 neurons. CA3-specific EGFPL10a mice were then crossed to the stress-susceptible BDNF Val66Met mouse line to characterize how a known genetic susceptibility alters both baseline translational profiles and the reactivity of CA3 neurons to stress. Not only do Met allele carriers exhibit distinct levels of baseline translation in genes implicated in ion channel function and cytoskeletal regulation, but they also activate a stress response profile that is highly dissimilar from wild-type mice. Closer examination of genes implicated in the mechanisms of neuroplasticity, such as the NMDA and AMPA subunits and the BDNF pathway, reveal how wild-type mice upregulate many of these genes in response to stress, but Met allele carriers fail to do so. These profiles provide a roadmap of stress-induced changes in a genetically homogenous population of hippocampal neurons and illustrate the profound effects of gene-environment interactions on the translational profile of these cells.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Células Piramidais/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Região CA3 Hipocampal/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/genética , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Transcriptoma/genética
2.
Mol Psychiatry ; 22(2): 296-305, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27021815

RESUMO

Alzheimer's disease (AD) and age-related cognitive decline represent a growing health burden and involve the hippocampus, a vulnerable brain region implicated in learning and memory. To understand the molecular effects of aging on the hippocampus, this study characterized the gene expression changes associated with aging in rodents using RNA-sequencing (RNA-seq). The glutamate modulator, riluzole, which was recently shown to improve memory performance in aged rats, prevented many of the hippocampal age-related gene expression changes. A comparison of the effects of riluzole in rats against human AD data sets revealed that many of the gene changes in AD are reversed by riluzole. Expression changes identified by RNA-Seq were validated by qRT-PCR open arrays. Riluzole is known to increase the glutamate transporter EAAT2's ability to scavenge excess glutamate, regulating synaptic transmission. RNA-seq and immunohistochemistry confirmed an increase in EAAT2 expression in hippocampus, identifying a possible mechanism underlying the improved memory function after riluzole treatment.


Assuntos
Cognição/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/efeitos dos fármacos , Riluzol/uso terapêutico , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Envelhecimento Cognitivo/fisiologia , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Masculino , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Riluzol/metabolismo , Transmissão Sináptica/fisiologia , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...